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ABSTRACT

Migraines are a highly prevalent and costly disorder which is hard to diagnose and typically
requires a specialist reviewing a patient’s history. As a result, migraines remain
underdiagnosed and hence undertreated. Electroencephalography (EEG) data has previously
been used to diagnose various neurological disorders such as epilepsy, motivating the use of
this data to develop a model for the automated diagnosis of migraines. In this paper, we
propose a straightforward approach to automated migraine diagnosis via the fine-tuning of
the ResNet50 architecture on spectrograms of EEG data. We demonstrate that our proposed
model has comparable performance to recent methods of automated migraine diagnosis at
96.3% accuracy. Furthermore, we show that we can apply methods in model explainability to
highlight aspects of EEG data which our model places more importance on, making it more
suitable for clinical use where the explainability of model predictions play an important
factor in clinical adoption.
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METHODOLOGY

Dataset: Publicly available 128-channel EEG (17 migraineur, 18
control), train-eval-test split 64:16:20, using 14 channels.!"]
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RESULTS

Table 1: Comparison of our method to previously reported methods for migraine diagnosis. Our method is
comparable to current methods while also having the crucial benefit of explainability for practical usage.
All methods use the same dataset by Chamanzar et al., 2020(", except for Subasi et al., 2019,

Classification method Number of Accuracy (%)

channels used

Aslan, 20210] Tunable Q-Factor wavelet 128 89.6%
transform, ensemble learning

Subasi et al., 2019[21 Discrete wavelet transform, 18 86.0%
random forest

Goker, 202314 Welch’s method, Bidirectional 128 96.0%
long-short term memory

Ullah et al., 2024151  Logistic regression 14 99.7%

Aslan, 20236l Continuous wavelet transform, 128 100%
CNN

Orhanbulucu et al., Continuous wavelet transform, 64 99.7%

202371 transfer learning via AlexNet

Proposed method Short-time Fourier transform, 14 96.3%

fine-tuning via ResNet 50
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RESULTS (CON'T)

Figure 2a: HiResCAM values for each channel,
averaged over all 4-s episodes. Bands with higher
values from HiResCAM in the heatmap represent
regions (corresponding to frequency bands in
time) of higher saliency used in model
predictions. Such visualisations are accurate in
place of visualisations for only migraines or only
non-migraines, as model importances align for
both migraines and non-migraines. The bottom
right box refers to the average HiResCAM values
of all channels, across all episodes.
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Figure 2b: produced with the same
procedure as Figure 2a, but with the
lower cutoff of the heatmap at 0.2
instead of O, for better visibility of more
significant model importances.
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= We conclude that our fine-tuning approach performs comparably with previous
research, while outperforming approaches proposed in Aslan, 20215], Subasi et al.,
2019 and Goker, 20231, We also show that we are able to achieve model
performance comparable to previously reported deep learning methods, using data
from just a subset of electrodes identified in Ullah et al., 2024"/,

= Based on our HiResCAM values, our model places emphasis on the electrode-
frequency combinations (in order of their appearance in Figure 3b), F7 (8-16 Hz), C4
(0-8 Hz), O1 (0-8 Hz), P4 (0-8 Hz), O1 (0-8 Hz), C6 (8-16 Hz), T7 (0-8 Hz). T8 (0-8
Hz). Further statistical analysis showed that the power in these highlighted
frequency bands were significantly lower (p < 0.05) in migraineurs compared to
controls.

* The correlates found from C4 have some consistency with prior research, which
found that in interictal migraineurs, power was lower in fronto-central and parietal
regions in all frequency bands except gammal®l.
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